- Introduction
- The first fundamental form
- Gradient and Divergence : For example,
- Divergence of a vector field on the surface
- Divergence of a vector field
- Laplace Beltrami Operator
- Jacobi Formula : Matrix Defferentiation for $\det A$
- Lemma 1
- Lemma 2
- Theorem : Jacobi’s Lemma
- Corollary
- Levi-Civita Connection[3]
- Christoffel synbol
- Note
- Reference
Introduction
surface parameter $x(q)$ 를 $x \in \mathbb{R}^n$, $q \in \mathbb{R}^d$ for $ n > d$ 라 정의하고 다음과 같은 metric tensor를 정의하자.
\[g_{ij} = \frac{\partial x}{\partial q_i} \cdot \frac{\partial x}{\partial q_j}\]$G = [g_{ij}]$ 는 symmetruc matrix 로서 curve의 길이, surface내 patch의 면적등을 계산하기 위한 모든 Information을 가지게 된다.
The first fundamental form
이때 The first fundamental form을 다음과 같이 정의하자.
\[\mathcal{F}^{(1)} (dq, dq) \doteq dq^T G(q) dq\]- 이를 이렇게 생각해보자. $t:\mathbb{R} \rightarrow q(t) \in \mathbb{R}^d \rightarrow x(q) \in \mathbb{R}^n$ 인 상태에서
이어야 한다. 그렇다면 $\frac{\partial q}{\partial t} \in \mathbb{R}^d$ 일때, $\left[ \frac{\partial x}{\partial q} \right] \in \mathbb{R}^{n \times d}$ 이다.
따라서, $\left[ \frac{\partial x}{\partial q} \right]$는 일반적인 Matrix 이므로 다루기가 쉽지 않다. 여기에 Symmetry 성질을 부여한 $d \times d$ matrix를 생각하면, 다음과 같이 정의할 수 있다.
\[G(q) = \left[ \frac{\partial x}{\partial q} \right]^T \left[ \frac{\partial x}{\partial q} \right] \in \mathbb{R}^{d \times d}\]즉, Jacobian $J(q) = \left[ \frac{\partial x}{\partial q} \right]$ 에 대하여 $G(q) = J^T J$ 이다.
한편 $q = q(s)$ 라고 할 때 parameterize surface의 Coordinate Change는 Chain-rule에 의해 다음과 같다. \(dq = J(s) ds, \;\;\;\; \text{where }J(s) = \left[ \frac{\partial q}{\partial s_i}, \frac{\partial q}{\partial s_j} \right]\)
좌표게 변환에 대하여 Fundamental form은 Invariance 이므로 $\mathcal{F}_q^{(1)} = \mathcal{F}_s^{(1)}$ i.e. \(ds^T G_s(s) ds = ds^T J^T(s) G_q(q(s)) J(s) ds\)
다시말해, The metric Tensor Transform under coordinate change as
\[G_s(s) = J^T(s) G_q(q(s)) J(s)\]그러므로 만일 $G(s)$를 알 수 있다면 Differential form의 주요 정보를 알 수 있다. 예를 들어, $\tilde{x}(t) = x(q(t)) \text{for } t \in [t_1, t_2]$ 로 정의되는 Curve의 Arc Length를 구하는 경우 \(L(t_1, t_2) = \int_{t_1}^{t_2} \left( \frac{d \tilde{x}}{dt} \cdot \frac{d \tilde{x}}{dt}\right)^{\frac{1}{2}} dt = \int_{t_1}^{t_2} \left( \left[ \frac{d q}{dt}\right]^T G(q) \frac{d q}{dt} \right)^{\frac{1}{2}} dt\)
Notice \(\left( \frac{d \tilde{x}}{dt} \right)^T \left( \frac{d \tilde{x}}{dt} \right) = \left( \left[ \frac{\partial x}{\partial q} \right] \frac{\partial q}{\partial t} \right)^T \left( \left[ \frac{\partial x}{\partial q} \right] \frac{\partial q}{\partial t} \right) = \left( \frac{\partial q}{\partial t} \right)^T \left[ \frac{\partial x}{\partial q} \right]^T \left[ \frac{\partial x}{\partial q} \right] \left( \frac{\partial q}{\partial t} \right) = \left( \frac{\partial q}{\partial t} \right)^T G(q) \left( \frac{\partial q}{\partial t} \right)\)
또한 element of surface area는 다음과 같다. \(dS = |G(q)|^{\frac{1}{2}} dq_1 \wedge \cdots \wedge dq_n\) where $|G(q) |^{\frac{1}{2}} \doteq \sqrt{ \det G(q)}$
$G = [g_{ij}]$ 로 정의되었는데, Metric Tensor의 Inverse를 다음과 같이 표시한다. \(G^{-1} = [G^{ij}]\)
Gradient and Divergence : For example,
Gradient vector field of a real-valued function on the surface cna be defined as \((\nabla f)_i \doteq \sum_j g^{ij} \frac{\partial f}{\partial q_j}\)
- 보다 정확히 표시하면 다음의 의미이다.
\(\nabla_x f = \sum_i \frac{\partial f}{\partial x_i} e_i^x = \sum_i \left( \sum_j g^{ij} \frac{\partial f}{\partial q_j} \right) e_i^x\)
- 즉, $e^q$ Frame에서 만들어진 Gradient의 계수는 Metric Tensor의 Inverse $g^{ij}$를 통해 $e^x$ Frame의 Gradient의 계수로 보내는 것이다.
- 이를 통해 서로 다른 Frame 혹은 Tangent Space에서의 Gradient 를 모든 정보가 없어도 Frame간의 Metric Tensor만 있다면 구할 수 있다.
proof $f(x(q))$ 에 대하여 생각하면 간단하다. 먼저 $x$에 대한 Orthogonal Frame을 $e_k^x \triangleq \frac{\partial }{\partial x_k}$ 라 정의하면 $q$에 대한 Frame vector는
\[e_i^q \triangleq \frac{\partial }{\partial q_i} = \frac{\partial }{\partial x_k}\frac{\partial x_k}{\partial q_i} = e_k^x \frac{\partial x_k}{\partial q_i}\]이때 $e_k^x \in \mathbb{R}$ 이고 $\mid \frac{\partial x_k}{\partial q_i}\mid = 1$ 이다. 만일 $e_k^x \in \mathbb{R}^n $ 이면 $\mid e_i^q \mid = 1$ 이므로
\[e_i^q \triangleq \alpha_i \frac{\partial }{\partial q_i} = \frac{1}{|J_i(q)|}\sum_k \frac{\partial }{\partial x_k}\frac{\partial x_k}{\partial q_i} = \frac{1}{|G_i(q)|^{\frac{1}{2}}} \sum_k e_k^x \frac{\partial x_k}{\partial q_i}\]위 식에서 $J_i(q)$는 Jacobian의 $i$ 번째 Column Vector를 가리키며 $J_i(q)$는 크기이다. 마찬가지로 $G_i(q)$ 가 결정된다.
Gradient는 각 Frame에 대하여 다음과 같다.
\[\nabla_x f(x) = \sum_k \frac{\partial f}{\partial x_k} e_k^x, \;\; \nabla_q f(x(q)) = \sum_i \frac{\partial f(x(q))}{\partial q_i} e_i^q\]논의를 간편하게 하기 위해 $\mid G_i(q) \mid = 1$인 경우만 생각하자.
위 Gradient 식은 좌항의 $e_k^x$ Frame상의 Gradient를 $e_i^q$ Frame에 대하여 표현하는 것이므로
\[\begin{aligned} \nabla_q f(x(q)) &= \sum_i \frac{\partial f}{\partial q_i} e_i^q \\ &= \sum_i \sum_k \frac{\partial f}{\partial x_k} \frac{\partial x_k}{\partial q_i} e_i^q \\ &= \sum_k \sum_{i, j} \frac{\partial f}{\partial x_k} \frac{1}{|G_i(q)|^{\frac{1}{2}}} \frac{\partial x_k}{\partial q_i} \cdot \frac{\partial x_k}{\partial q_j} e_k^x = \sum_k \sum_{i, j} \frac{\partial x_k}{\partial q_i} \frac{\partial x_k}{\partial q_j} \frac{\partial f}{\partial x_k} e_k^x\\ &= \sum_k \sum_{ij} g_{ij} \frac{\partial f}{\partial x_k} e_k^x = G(q) \nabla f(x) \end{aligned}\]따라서 $g_{ij}$ 의 Inverse의 정의에 의해 ($\because G(q)^{-1} \triangleq \mid G(q) \mid^{-\frac{1}{2}} [\tilde{g}^{ij}] = [g^{ij}]$)
\[(\nabla_x f)_i = \frac{\partial f}{\partial x_i} = \sum_j g^{ij} \frac{\partial f}{\partial q_j}\]$G$가 $d \times d$ matrix이므로 단순 Matrix 표현식으로는 $n \times 1$ 벡터인 $\nabla_x f$ 를 표현할 수 없으며, 내부 Component의 관계를 통해 얻어 낼 수 밖에 없다. Q.E.D
Example : Gradient on Sphere Coordinate
The spherical coordinate 는 다음과 같다.
\[\begin{aligned} x &= r\sin\theta\cos\phi \\ y &= r\sin\theta\sin\phi \\ z &= r\cos\theta \end{aligned}\]그리고 $e_k^x \in { \frac{\partial }{\partial x}, \frac{\partial }{\partial y}, \frac{\partial }{\partial z} }$ 라 하고 $e_k^{\phi} \in { \alpha_1 \frac{\partial }{\partial r}, \alpha_2 \frac{\partial }{\partial \phi}, \alpha_3 \frac{\partial }{\partial \theta} }$ 이라 하자,
let $J$ be the Jacobi matrix
\[J = \begin{pmatrix} \sin\theta\cos\phi & -r\sin\phi\sin\theta & r\cos\phi\cos\theta \\ \sin\theta\sin\phi & r\cos\phi\sin\theta & r\sin\phi\cos\theta \\ \cos\theta & 0 & -r\sin\theta \end{pmatrix},\]the metric tensor can be obtained as
\[\left[ g_{ij} \right] = J^TJ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2\sin^2\theta & 0 \\ 0 & 0 & r^2 \end{pmatrix}\]좌표 변환을 위해 다음을 각각 살펴보면
\[\begin{aligned} \frac{\partial }{\partial r} &= \frac{\partial }{\partial x}\frac{\partial x}{\partial r} + \frac{\partial }{\partial y}\frac{\partial y}{\partial r} + \frac{\partial }{\partial z}\frac{\partial z}{\partial r} \\ \frac{\partial }{\partial r} &= \frac{\partial }{\partial x} \cos \phi \sin \theta + \frac{\partial }{\partial y} \sin \phi \sin \theta + \frac{\partial }{\partial z} \cos \theta \\ \Bigg|\frac{\partial }{\partial r} \Bigg| &= \sqrt {\cos^2 \phi \sin^2 \theta + \sin^2 \phi \sin^2 \theta + \cos^2 \theta} = 1 \end{aligned}\] \[\begin{aligned} \frac{\partial }{\partial \phi} &= \frac{\partial }{\partial x}\frac{\partial x}{\partial \phi} + \frac{\partial }{\partial y}\frac{\partial y}{\partial \phi} + \frac{\partial }{\partial z}\frac{\partial z}{\partial \phi} \\ \frac{\partial }{\partial \phi} &= \frac{\partial }{\partial x} (-r\sin \phi \sin \theta) + \frac{\partial }{\partial y} r\cos \phi \sin \theta + \frac{\partial }{\partial z} 0 \\ \Bigg|\frac{\partial }{\partial \phi} \Bigg| &= \sqrt{ r^2 \cos^2 \phi \sin^2 \theta + \sin^2 \phi \sin^2 \theta } = r \sin \theta \end{aligned}\] \[\begin{aligned} \frac{\partial }{\partial \theta} &= \frac{\partial }{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial }{\partial y}\frac{\partial y}{\partial \theta} + \frac{\partial }{\partial z}\frac{\partial z}{\partial \theta} \\ \frac{\partial }{\partial \theta} &= \frac{\partial }{\partial x} r\cos \phi \cos \theta + \frac{\partial }{\partial y} r \sin \phi \cos \theta + \frac{\partial }{\partial z} (-r \sin \theta) \\ \Bigg|\frac{\partial }{\partial r} \Bigg| &= \sqrt{r^2 \cos^2 \phi \sin^2 \theta + r^2 \sin^2 \phi \sin^2 \theta + r^2 \cos^2 \theta} = r \end{aligned}\]그러므로 Spherical Coordinate에서의 Element Vector $e_k^{\phi}$는 다음과 같다.
\[\begin{aligned} 1 = |e_1^{\phi}| &= |\alpha_1 | \Bigg|\frac{\partial }{\partial r} \Bigg| \Rightarrow |\alpha_1 |=1 &\Rightarrow e_1^{\phi} &= \frac{\partial }{\partial r} \\ |e_2^{\phi}| &= |\alpha_2 | \Bigg|\frac{\partial }{\partial \phi}\Bigg| \Rightarrow |\alpha_2 |=\frac{1}{r \sin \theta} &\Rightarrow e_2^{\phi} &= \frac{1}{r \sin \theta} \frac{\partial }{\partial \phi} \\ |e_3^{\phi}| &= |\alpha_3 | \Bigg|\frac{\partial }{\partial \theta} \Bigg| \Rightarrow |\alpha_3 |=\frac{1}{r} &\Rightarrow e_3^{\phi} &= \frac{1}{r} \frac{\partial }{\partial \theta} \end{aligned}\]따라서
\[\begin{aligned} \nabla f(x) &= \frac{\partial f}{\partial r} \frac{\partial}{\partial r} + \frac{1}{r^2 \sin^2 \theta}\frac{\partial f}{\partial \phi} \frac{\partial}{\partial \phi} + \frac{1}{r^2}\frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta} \\ &= \frac{\partial f}{\partial r} e_1^{\phi} + \frac{1}{r \sin \theta}\frac{\partial f}{\partial \phi} e_2^{\phi} + \frac{1}{r}\frac{\partial f}{\partial \theta} e_3^{\phi} \\ &= (\frac{\partial f}{\partial r}, \; \frac{1}{r \sin \theta}\frac{\partial f}{\partial \phi}, \; \frac{1}{r}\frac{\partial f}{\partial \theta})^T \end{aligned}\]Divergence of a vector field on the surface
- Definition of Divergence $\nabla \cdot f : M \rightarrow \mathbb{R}$ for $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$
- $\nabla \cdot f = \text{trace} (df)$
- Definiton of Divergence for Frame ${e_k^x}$ and a vector field $f(x) \in \mathbb{R}^n$
그러므로 Divergence는 다음과 같이 정의될 수 있다.
For $e_k^x \triangleq \frac{\partial }{\partial x_k}$, and $f(x) = \sum_i f_i e_i^x$
\[\begin{aligned} \nabla \cdot f(x) &= \sum_k \frac{\partial }{\partial x_k} e_k^x \cdot \sum_i f_i e_i^x \\ &= \sum_k \sum_i \frac{\partial f_i}{\partial x_k} e_k^x \cdot e_i^x = \sum_k \frac{\partial f_k}{\partial x_k} \;\;\;\because e_k^x \cdot e_i^x = 1 \;\; \text{if }k=i, \; \text{else }0 \end{aligned}\]만일 위에서 $e_k^x \cdot e_i^x$ Euclidean Space가 아니라면 Metric Tensor에 의한 해석이 필요하다. 이때 Divergence는 다음과 같이 정의된다.
\[\nabla \cdot f = tr(Y \mapsto \nabla_Y f)\]이때 Vector field $f$ 는
\[f = f^i \frac{\partial }{\partial q_i} e_i^q\triangleq f^i \partial_i\]Divergence의 정의를 생각해보면 Trace이므로 Scalar 값이다. 이를 생각해보면 특정 Component의 값으로 만들어 줄 수 있다는 것이 된다. 일반적으로 Vector field $V = \sum_j v^j X_j$ 를 정의하고 이것의 Covariant Differential을 생각해보면
\[\frac{DV}{dt} = \sum_k \left[ \frac{dv^k}{dt} + \sum_{ij}\Gamma_{ij}^k \frac{dx^i}{dt} v_j \right]X_k\]그런데 여기서 출력을 $k$가 아닌 $i$ 성분으로 보내면 이는 Trace 중의 한 성분과 같은 의미가 된다.
이떄, Divergence는 다음과 같이 Normal ([partial )성분의 미분 (그래서 Tangent Space위로 Projection)과 Tangent 성분의 미분 (Christoffel Symbolic part)으로 표현된다.
\[\nabla \cdot f = \frac{\partial f^i}{\partial q_i} + \Gamma_{ij}^{i}f^j\]그러면 $k$ 대신 하나의 성분 $i$로만 보내는 것이므로 Christoffel 기호는
\[\Gamma_{ij}^{i} = \frac{1}{2} \left( \frac{\partial }{\partial q_i}g_{jk} + \frac{\partial }{\partial q_j}g_{ki} - \frac{\partial }{\partial q_k}g_{ij} \right)g^{ki}\]이 경우
\[g^{ki} \frac{\partial }{\partial q_i} g_{jk} = g^{ki} \frac{\partial }{\partial q_k} g_{ij}\]즉, 아래 위 첨자를 지워보면 $g_j$ 만 양변에 똑같이 남게되어 같다.
이를 이용하여 다음을 증명한다.
Divergence of a vector field
Divergence of a vector field on the surface 는 따라서 다음과 같이 정의된다. \(\nabla \cdot f \doteq | G |^{-\frac{1}{2}} \sum_k \frac{\partial }{\partial q_k} (|G|^{\frac{1}{2}}f_k)\)
proof
위에서 Trace의 경우 Christoffel 기호는
\[\Gamma_{ij}^i = \frac{1}{2}g^{ki}\frac{\partial }{\partial q_j} g_{ki}\]Jacobi Formula의 Corollary에서
\[\frac{1}{2}g^{ki}\frac{\partial }{\partial q_j} g_{ki} = \frac{\partial}{\partial q_j} \log \sqrt{|G|}\]Label을 수정하고 Divergence 정의에서
\[\begin{aligned} (\nabla \cdot f)^i &= \frac{\partial f^i}{\partial q_i} + \Gamma_{ij}^{i}f^j \\ &= \frac{\partial f^i}{\partial q_i} + \frac{\partial}{\partial q_i} \log \sqrt{|G|}f^i \\ &= \frac{\partial f^i}{\partial q_i} + \frac{1}{\sqrt{|G|}}\frac{\partial \sqrt{|G|}}{\partial q_i} f^i \\ &= \frac{1}{\sqrt{|G|}}\frac{\partial \sqrt{|G|} f^i}{\partial q_i} \end{aligned}\]그러므로
\[\nabla \cdot f = \frac{1}{\sqrt{|G|}} \sum_i \frac{\partial \sqrt{|G|} f^i}{\partial q_i}\]Laplace Beltrami Operator
- The Laplace (or Laplace Beltrami Operator) of the smooth real-valued function os defined as the divergence of the gradient
위에서의 Gradient 정의와 Divergence 정의를 가져와서 Laplace -Beltrami 정의에 대입하면 증명 끝.
Jacobi Formula : Matrix Defferentiation for $\det A$
\[\frac{d}{dt} \det A(t) = \text{tr} \left(\text{adj} A \cdot \frac{dA(t)}{dt} \right)\]Lemma 1
\[\frac{d \det I(s)}{ds} = \text{trace}\]그러므로 differential $\det’(I)$ 는 Linear operator로서 $\det’(I) : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$
proof
\[\frac{d}{dT} \det(I)(T) = \lim_{\varepsilon \rightarrow 0} \frac{\det(I + \varepsilon T) - \det I}{\varepsilon}\]논의를 간단하게 하기 위해여 $T$도 Diagonal $n \times n$ matrix라고 하면 (그냥 해도 결과는 같다.)
\[\det (I + \varepsilon T) - \det I = 1 + {n \choose 1} \varepsilon T + \cdots + {n \choose n} \varepsilon^n T^{n} - 1\]에서 $\varepsilon$이 1차인 항은 $n \varepsilon T$ 뿐이다. 따라서 Trace.
Note
그러므로
\[\frac{d I(T)}{dT} = \text{trace} \Rightarrow d I(T) = \text{trace T}\]Lemma 2
For an invertible matrix $A$, we have :
\[\frac{d \det A(T)}{dT} = \det A \cdot \text{tr}(A^{-1} T)\]proof
임의의 정방형 matrix $X$에 대하여
\[\det X = \det(A A^{-1} X ) = \det(A) \det (A^{-1} X)\]이므로
에 대하여 미분하고 이 결과를 $X=A$로 대입하면
\[\begin{aligned} \frac{d \det X(T)}{dT} \Bigg\vert_{X = A} &= \frac{d}{dT} \det \left( A A^{-1} X \right) (T) \Bigg\vert_{X = A} \\ &= \det (A) \frac{d}{dT} \det(A^{-1} A)(T) \\ &= \det (A) \frac{d\det I}{d A^{-1} T} \frac{d A^{-1}T}{dT} T \\ &= \det (A) \frac{d\det I}{d A^{-1} T} \left( A^{-1}T \right)\\ &= \det (A) \text{tr} \left( A^{-1}T \right) \;\;\; \because \text{by Lemma 1} \end{aligned}\]Theorem : Jacobi’s Lemma
\[\frac{d}{dt} \det A(t) = \text{tr} \left(\text{adj} A \cdot \frac{dA(t)}{dt} \right)\]where adj is the adjugateof A such that
\[A^{-1} = \frac{\text{adj} A}{\det A}, \;\;\; \text{ where } \text{adj}A \in \mathbb{R}^{n \times n}\]proof
In Lemma 2, Let $T = \frac{dA(t)}{dt}$ , then
\[\frac{d}{dt} \det A(t) = \det A \cdot \text{tr} \left( A^{-1} \frac{dA(t)}{dt}\right) = \det A \cdot \text{tr} \left( \frac{\text{adj} A}{\det A} \cdot \frac{dA}{dt} \right) = \text{tr} \left( \text{adj A} \cdot \frac{dA}{dt} \right)\]Corollary
Let $U \subseteq \mathbb{R}^n$ be openm and let $g:U \rightarrow GL(n, \mathbb{C}) \subseteq M_n (\mathbb{C})$ be differentible. $g$의 component를 $g_{ij}$ 로 표현하고 그 Inverse를 $g^{ij}$ 라 할 때 \(g^{ij} \frac{\partial g_{ij}}{\partial q_k} = \frac{\partial g_{ij}g^{ij}}{\partial q_k} =\frac{1}{\det g} \frac{\partial \det g}{\partial q_k} =\frac{\partial }{\partial q_k} \log (|\det g|)\)
위 표현은 Manifold 의 Tangent space의 vector space를 $\frac{\partial }{\partial q_k}$로 보았을 때 이다. 이를 단순하게 $X_k$ 로 보고 이를 생략한 형태로 다시 쓰면 다음과 같다.
\[g^{ij} \partial_k g_{ij} = \partial_k g_{ij}g^{ij} =\frac{\partial_k \det g}{\det g} =\partial_k \log (|\det g|)\]proof
Fix $x \in U$ and consider the family $h(t) = g(x + tq_k)$ then,
\[\frac{\partial h(t)}{\partial t} \Bigg|_{t=0} = \frac{\partial g(x)}{\partial q_k}\]and
\[\frac{\partial \det h(t)}{\partial t} \Bigg|_{t=0} = \frac{\partial (\det g(x))}{\partial q_k}\]By Jacobi Formula
\[\frac{\partial \det h(t)}{\partial t} \Bigg|_{t=0} = \text{tr} \left( \text{Adj}(h(0)) \frac{\partial h(t)}{\partial t} \Bigg|_{t=0}\right) = \det(g(x)) \text{tr} \left( g^{-1}(x) \frac{\partial g(x)}{\partial q_k} \right) = \det(g(x)) g^{ij} \frac{\partial g_{ij}}{\partial q_k}\]그러므로
\[\frac{1}{\det(g(x))}\frac{\partial (\det g(x))}{\partial q_k} = \frac{\partial }{\partial q_k} \log (|\det g(x)|)\]그리고 나머지는 모두 성립한다.
Levi-Civita Connection[3]
Affine Connection $\nabla$ 에서 다음의 2가지 조건이 만족되면 이를 Levi-Civita Connection이라 한다.
- it preserves the metric, i.e., $\nabla g = 0$.
- it is torsion-free, i.e., for any vector fields $X$ and $Y$ we have $\nabla _X Y − \nabla_Y X = [X, Y]$, where $[X, Y]$ is the Lie bracket of the vector fields $X$ and $Y$.
Christoffel synbol
한편 Christoffel 기호는 다음과 같이 정의된다[3].
\[\Gamma_{ij}^m = \frac{1}{2} \sum_k \left( \frac{\partial}{\partial q_i}g_{jk} + \frac{\partial}{\partial q_j}g_{ki} - \frac{\partial}{\partial q_k}g_{ij}\right) g^{km}\]- $ijk \rightarrow jki \rightarrow -kij$ with $k$ and out $m$ 으로 외우면 된다.
Note
- Upper Index는 Scalar 의 index, Lower index는 vector의 index로 생각하면 된다.
Reference
[1] Matthias Hein, Markus Maier, “Manifold Denosing”, [2] Hein, Matthias, Audibert, Jean-Yves von Luxburg, Ulrike, “From Graphs to Manifolds – Weak and Strong Pointwise Consistency of Graph Laplacians” [3] Do Carmo, “Riemannian Geometry”, pp. 50-54 [4] G.S. Chrikijian, ‘Stochastic Models, Information theory, and Lie Groups’, Vol 1, Birkhauser, 2000
Comments