DiscreteGronwall Inequality

This article illustrates the Discrete Gronwall’s Lemma and Applications [1].

Introduction

The most formidable case in a sequence analysis, we meet the following equations: to sum over n from$n=0$ to $n=N-1$ on the left and right hand sides of both

\[\begin{aligned} X_{n+1} - x_n &= F_n (X_n) \\ \bar{X}_{n+1} - \bar{x}_n &= F_n (\bar{X}_n) + \xi_n \end{aligned}\]

to obtain \(\bar{X}_N - X_N = \bar{X}_0 - X_0 + \sum_{n=0}^{N-1} \left( F_n(\bar{X}_n) - F_n (X_n) \right) + \sum_{n=0}^{N-1} \xi_n.\)

Suppose that the function $F_n$ are Lipschitz continuous with Lipschitz constants $L_n > 0$, and set $\bar{X_0} = X_0$. We get

\[\| \bar{X_N} - X_N \| \leq \| \sum_{n=0}^{N-1} \xi_n \| + \sum_{n=0}^{N-1} L_n \| \bar{X}_n - X_n \|\]

and therein lies the problem.

이러한 경우에 대한 해석을 위해 Discrete Gronwell’s Lemma가 필요하다.

In [1], let \(\{x_n\}_{n=0}^{\infty}, \; \{a_n\}_{n=0}^{\infty}, \text{and} \; \{b_n\}_{n=0}^{\infty}\) be sequences of real numbers, with the $b_n \geq 0$, which satisfy

\[x_n \leq a_n + \sum_{j=n_0}^{n-1} b_j x_j n, \;\; \in \mathbf{Z}[n_0, \infty] \label{eq01:intro} \tag{1}\]

For any integer $N > n_0$ , let

\[S(n_0, N) = \{k \vert k = \arg \max \frac{x_k}{\prod_{j=n_0}^{k-1} (1+b_j)}, \; \forall n \in \mathbf{Z}[n_0, N] \}\]

Then, for any $\theta \in S(n_0, N)$,

\[x_n \leq a_{\theta} \prod_{j=n_0}^{n-1} (1 + b_j), \;\; n \in \mathbf{Z}[n_0, N]\]

In paticular, for \(\bar{a}_{\theta} = \min a_{\theta} \prod_{j=n_0}^{n-1} (1 + b_j), \; \text{for } \theta \in S(n_0, N),\; n \in \mathbf{Z}[n_0, N]\),

\[x_n = \bar{a}_{\theta} \prod_{j=n_0}^{n-1} (1 + b_j), \;\; n \in \mathbf{Z}[n_0, N]\]

그러나, 2009년에 이것에서 더 발전된 형태의 Grownwell 부등식이 소개 되었다. 결론만 보면 방정식 $\eqref{eq01:intro}$ 와 같이 주어졌을 때

\[x_n \leq a_n + \sum_{j=n_0}^{n-1} a_j b_j \exp (\sum_{j < k < n} b_k), \;\; \in \mathbf{Z}[n_0, \infty]\]

와 같다 [2]. 이를 자세히 살펴본다.

Fundamental Expressions of Gronwall’s Lemma

Gronwall’s Lemma

Let $y(t)$, $f(t)$, and $g(t)$ be nonnegative functions on $\mathbf{R}[0, T]$ having one-sided limits at every $ t \mathbf{R}[0, T]$, and assume that for $0 \leq t \leq T​$ we have

\[y(t) \leq f(t) + \int_0^t g(s) y(s)ds\]

Then for $0 \leq t \leq T$ we also have

\[y(t) \leq f(t) + \int_0^t g(s) f(s) \exp \left( \int_s^t g(u) du \right) ds\]

In many cases, $g(\cdot)$ is Lipschitz constant, i.e. $g(\cdot)= L$, we obtain more abbreviate formulation such that

\[y(t) \leq f(t) + L \int_0^t f(s) \exp (L(t - s)) ds\]

Discrete Gronwall inequality

If $\langle y_n \rangle$, $\langle f_n \rangle$, and $\langle g_n \rangle$ are nonnegative sequences and

\[y_n \leq f_n + \sum_{0 \leq k \leq n} g_k y_k, \;\; \forall n \geq 0, \label{eq01:DGI} \tag{2}\]

then

\[y_n \leq f_n + \sum_{0 \leq k \leq n} f_k g_k \exp \left( \sum_{k<j<n} g_j \right), \;\; \forall n \geq 0, \label{eq02:DGI} \tag{3}\]

이를 증명하기 위해 먼저 $f_n \equiv 1$ 인 경우에 대하여 생각한다.

Lemma

Let $\langle g_n \rangle$ be a sequence. For $n \geq 0$ let

\[G_n := \prod_{0 \leq j \leq n} (1 + g_j). \label{eq01:lemma} \tag{4}\]

Then

\[G_n = 1 + \sum_{0 \leq j \leq n} g_j G_j \label{eq02:lemma} \tag{5}\]

for $n \geq 0$, and more generally, for $0 \leq k \leq n$ ,

\[G_n = G_k + \sum_{k \leq j < n} g_j G_j \label{eq03:lemma} \tag{6}\]

proof of lemma

Assume that, for $k < n$, the equation $\eqref{eq01:lemma}$ and $\eqref{eq02:lemma}$ are hold such that

\[G_k = \prod_{0 \leq j \leq k} (1 + g_j), \;\;G_k = 1 + \sum_{l \leq j < k} g_j G_j\]

For $k+1>k$

\[G_{k+1} = \prod_{0 \leq j \leq k+1} (1 + g_j) = \prod_{0 \leq j \leq k} (1 + g_j) \cdot (1 + g_{k}) = G_k\cdot (1 + g_{k}) = G_k + g_{k} G_k\]

Therefore,

\[G_{k+1} = 1 + \sum_{l \leq j < k} g_j G_j + g_{k} G_k = 1 + \sum_{l \leq j < k+1} g_j G_j\]

Q.E.D.

Propostion

Assume that $\langle x_n \rangle$, $\langle f_n \rangle$, and $\langle g_n \rangle$ are nonnegative sequences and

\[x_n = f_n + \sum_{0\leq k \leq n} g_k x_k, \; \text{for } n \geq 0\]

Then

\[x_n = f_n + \sum_{0\leq k \leq n} f_k g_k \prod_{k < j < n} (1+g_j)= f_n + \sum_{0\leq k \leq n} f_k g_k \frac{G_n}{G_{k+1}} , \; \text{for } n \geq 0 \label{eq01:prop} \tag{7}\]

proof

  • Idea (mainly from [1])
\[\chi_n := f_n + \sum_{0\leq k < n} f_k g_k \frac{G_n}{G_{k+1}} \label{eq02:prop} \tag{8}\]
  • We shall prove that $x_m = \chi_m$ for $m \geq 0$.
  • Since $G_{k+1} = G_k (1 + g_k)$,
\[G_{n} = G_{n-1} (1 + g_{n-1}) = G_{n-2} (1 + g_{n-1})(1 + g_{n-2}) = G_{k+1} \prod_{k < j < n} (1+g_j) \\ \therefore \prod_{k < j < n} (1+g_j) = G_n/G_{k+1}\]
  • In $\eqref{eq02:prop}$, $k = n-1$ 이면 $G_n/G_{n-1+1} = 1$, 고로 마지막 항은 $f_{n-1} g_{n-1}$.

For $n=0$, $x_0 = f_0 = \chi_0$, Assume that $x_n = \chi_n$ for $0 \leq n < m$. Then

\[\begin{aligned} x_m &= f_m + \sum_{0\leq k < m} g_k x_k = f_n + \sum_{0\leq k < n} g_k \chi_k \\ &= f_m + \sum_{0\leq k < m} g_k \left( f_k + \sum_{0\leq j < k} f_j g_j \frac{G_k}{G_{j+1}} \right) \\ &= f_m + \sum_{0\leq k < m} g_k f_k + \sum_{0\leq k < m} \sum_{0\leq j < k} g_k f_j g_j \frac{G_k}{G_{j+1}} \\ &= f_m + \sum_{0\leq k < m} g_k f_k + \sum_{0\leq j < m-1} \sum_{j \leq k < m} g_k f_j g_j \frac{G_k}{G_{j+1}} \\ &= f_m + \sum_{0\leq k < m} g_k f_k + \sum_{0\leq k < m-1} \sum_{k \leq j < m} g_j f_k g_k \frac{G_j}{G_{k+1}} \;\; \because \text j \leftrightarrow k \\ &= f_m + g_{m-1} f_{m-1} + \sum_{0\leq k < m-1} g_k f_k + \sum_{0\leq k < m-1} \sum_{k \leq j < m} g_j f_k g_k \frac{G_j}{G_{k+1}} \;\; \because \text j \leftrightarrow k \\ &= f_m + g_{m-1} f_{m-1} + \sum_{0\leq k < m-1} g_k f_k \left( 1 + \sum_{k \leq j < m} g_j \frac{G_j}{G_{k+1}} \right)\\ &= f_m + \sum_{0\leq k < m} g_k f_k \frac{G_m}{G_{k+1}} \;\; \because \text{by }\eqref{eq01:prop}, \eqref{eq02:prop} \\ &= \chi_m \end{aligned}\]
  • No $k < j$ so that $\sum_{0\leq k < m} \sum_{0\leq j < k} = \sum_{0\leq j < m-1} \sum_{j \leq k < m}$. It is trivial

Consequently, $x_n = \chi_n​$.

Q.E.D

Corollary

Therefore, instaed of $x_n$, there exists $y_n$ such that

\[y_n \leq f_n + \sum_{0\leq k \leq n} g_k y_k, \; \text{for } n \geq 0\]

Then

\[y_n \leq f_n + \sum_{0\leq k \leq n} f_k g_k \prod_{k < j < n} (1+g_j) \; \text{for } n \geq 0 \label{eq01:col} \tag{9}\]

Main proof of Discrete Gronwall’s Lemma

Since

\[(1+g_j) \leq \exp(g_j),\]

the mutiple production of $(1+g_j)$ in $\eqref{eq01:col}$ is replaced with $\exp$ such that

\[\begin{aligned} y_n &\leq f_n + \sum_{0 \leq k \leq n} f_k g_k \prod_{k < j < n}(1 + g_j )\\ &\leq f_n + \sum_{0 \leq k \leq n} f_k g_k \exp(\sum_{k < j < n} g_j) \end{aligned} \label{eq01:main} \tag{10}\]

The equation $\eqref{eq01:main}$ is what we want.

Case of Lipschitz Constants

In many cases, the $g_j$ is not a function but is a constant such as Lipschitz constants. When we replaced $gj$ to a positive constant $L$, we can obtain the following Gronwall’s inequality.

\[\begin{aligned} y_n &\leq f_n + \sum_{0 \leq k \leq n} f_k L \exp(\sum_{k < j < n} L) \\ &\leq f_n + L \sum_{0 \leq k \leq n} f_k \exp(L(n-k)) \\ \end{aligned}\]

References

[1]

@article{CLARK1987279, 
title = "Short proof of a discrete gronwall inequality", 
journal = "Discrete Applied Mathematics", 
volume = "16", 
number = "3", 
pages = "279 - 281", 
year = "1987", 
issn = "0166-218X", 
doi = "https://doi.org/10.1016/0166-218X(87)90064-3", 
url = "http://www.sciencedirect.com/science/article/pii/0166218X87900643", 
author = "Dean S Clark", 
abstract = "We give an elementary proof of a generalization of the classical discrete Gronwall inequality xn⩽an + ∑j = n0n − 1bjxj, n = n0,…,N, implies xn⩽a∗ ∏j = n0n −1 (1+bj)a∗ = max{aj : j = n0,…,N}, n = n0,…,N) which improves the description of the multiplier a∗ to a minimum, rather than a maximum, over a certain subset of indices in {n0,…,N}." 
}

[2]

@INPROCEEDINGS{Holte2009, 
booktitle={MAA-NCS Meeting at the University of North Dakota}
title = {Discrete Gronwall Lemma and Applications}, 
year = {2009}, 
month={Oct},
url = {http://homepages.gac.edu/~holte/publications/GronwallLemma.pdf}, 
author = {J.M. Holte}, 
} 

Comments